3.777 \(\int (a+b \cos (c+d x)) (B \cos (c+d x)+C \cos ^2(c+d x)) \sec ^6(c+d x) \, dx\)

Optimal. Leaf size=114 \[ \frac {(a C+b B) \tan ^3(c+d x)}{3 d}+\frac {(a C+b B) \tan (c+d x)}{d}+\frac {(3 a B+4 b C) \tanh ^{-1}(\sin (c+d x))}{8 d}+\frac {(3 a B+4 b C) \tan (c+d x) \sec (c+d x)}{8 d}+\frac {a B \tan (c+d x) \sec ^3(c+d x)}{4 d} \]

[Out]

1/8*(3*B*a+4*C*b)*arctanh(sin(d*x+c))/d+(B*b+C*a)*tan(d*x+c)/d+1/8*(3*B*a+4*C*b)*sec(d*x+c)*tan(d*x+c)/d+1/4*a
*B*sec(d*x+c)^3*tan(d*x+c)/d+1/3*(B*b+C*a)*tan(d*x+c)^3/d

________________________________________________________________________________________

Rubi [A]  time = 0.23, antiderivative size = 114, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, integrand size = 38, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.184, Rules used = {3029, 2968, 3021, 2748, 3767, 3768, 3770} \[ \frac {(a C+b B) \tan ^3(c+d x)}{3 d}+\frac {(a C+b B) \tan (c+d x)}{d}+\frac {(3 a B+4 b C) \tanh ^{-1}(\sin (c+d x))}{8 d}+\frac {(3 a B+4 b C) \tan (c+d x) \sec (c+d x)}{8 d}+\frac {a B \tan (c+d x) \sec ^3(c+d x)}{4 d} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*Cos[c + d*x])*(B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x]^6,x]

[Out]

((3*a*B + 4*b*C)*ArcTanh[Sin[c + d*x]])/(8*d) + ((b*B + a*C)*Tan[c + d*x])/d + ((3*a*B + 4*b*C)*Sec[c + d*x]*T
an[c + d*x])/(8*d) + (a*B*Sec[c + d*x]^3*Tan[c + d*x])/(4*d) + ((b*B + a*C)*Tan[c + d*x]^3)/(3*d)

Rule 2748

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 2968

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Int[(a + b*Sin[e + f*x])^m*(A*c + (B*c + A*d)*Sin[e + f*x] + B*d*Sin[e + f*x
]^2), x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]

Rule 3021

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f
_.)*(x_)]^2), x_Symbol] :> -Simp[((A*b^2 - a*b*B + a^2*C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(m +
 1)*(a^2 - b^2)), x] + Dist[1/(b*(m + 1)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[b*(a*A - b*B + a*
C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A*b - a*B + b*C)*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e,
 f, A, B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]

Rule 3029

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (B_.)
*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Dist[1/b^2, Int[(a + b*Sin[e + f*x])
^(m + 1)*(c + d*Sin[e + f*x])^n*(b*B - a*C + b*C*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m,
 n}, x] && NeQ[b*c - a*d, 0] && EqQ[A*b^2 - a*b*B + a^2*C, 0]

Rule 3767

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> -Dist[d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rule 3768

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Csc[c + d*x])^(n - 1))/(d*(n -
 1)), x] + Dist[(b^2*(n - 2))/(n - 1), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1
] && IntegerQ[2*n]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin {align*} \int (a+b \cos (c+d x)) \left (B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^6(c+d x) \, dx &=\int (a+b \cos (c+d x)) (B+C \cos (c+d x)) \sec ^5(c+d x) \, dx\\ &=\int \left (a B+(b B+a C) \cos (c+d x)+b C \cos ^2(c+d x)\right ) \sec ^5(c+d x) \, dx\\ &=\frac {a B \sec ^3(c+d x) \tan (c+d x)}{4 d}+\frac {1}{4} \int (4 (b B+a C)+(3 a B+4 b C) \cos (c+d x)) \sec ^4(c+d x) \, dx\\ &=\frac {a B \sec ^3(c+d x) \tan (c+d x)}{4 d}+(b B+a C) \int \sec ^4(c+d x) \, dx+\frac {1}{4} (3 a B+4 b C) \int \sec ^3(c+d x) \, dx\\ &=\frac {(3 a B+4 b C) \sec (c+d x) \tan (c+d x)}{8 d}+\frac {a B \sec ^3(c+d x) \tan (c+d x)}{4 d}+\frac {1}{8} (3 a B+4 b C) \int \sec (c+d x) \, dx-\frac {(b B+a C) \operatorname {Subst}\left (\int \left (1+x^2\right ) \, dx,x,-\tan (c+d x)\right )}{d}\\ &=\frac {(3 a B+4 b C) \tanh ^{-1}(\sin (c+d x))}{8 d}+\frac {(b B+a C) \tan (c+d x)}{d}+\frac {(3 a B+4 b C) \sec (c+d x) \tan (c+d x)}{8 d}+\frac {a B \sec ^3(c+d x) \tan (c+d x)}{4 d}+\frac {(b B+a C) \tan ^3(c+d x)}{3 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.59, size = 85, normalized size = 0.75 \[ \frac {3 (3 a B+4 b C) \tanh ^{-1}(\sin (c+d x))+\tan (c+d x) \sec (c+d x) \left (8 (a C+b B) (\cos (2 (c+d x))+2) \sec (c+d x)+6 a B \sec ^2(c+d x)+9 a B+12 b C\right )}{24 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Cos[c + d*x])*(B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x]^6,x]

[Out]

(3*(3*a*B + 4*b*C)*ArcTanh[Sin[c + d*x]] + Sec[c + d*x]*(9*a*B + 12*b*C + 8*(b*B + a*C)*(2 + Cos[2*(c + d*x)])
*Sec[c + d*x] + 6*a*B*Sec[c + d*x]^2)*Tan[c + d*x])/(24*d)

________________________________________________________________________________________

fricas [A]  time = 0.53, size = 136, normalized size = 1.19 \[ \frac {3 \, {\left (3 \, B a + 4 \, C b\right )} \cos \left (d x + c\right )^{4} \log \left (\sin \left (d x + c\right ) + 1\right ) - 3 \, {\left (3 \, B a + 4 \, C b\right )} \cos \left (d x + c\right )^{4} \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \, {\left (16 \, {\left (C a + B b\right )} \cos \left (d x + c\right )^{3} + 3 \, {\left (3 \, B a + 4 \, C b\right )} \cos \left (d x + c\right )^{2} + 6 \, B a + 8 \, {\left (C a + B b\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{48 \, d \cos \left (d x + c\right )^{4}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))*(B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^6,x, algorithm="fricas")

[Out]

1/48*(3*(3*B*a + 4*C*b)*cos(d*x + c)^4*log(sin(d*x + c) + 1) - 3*(3*B*a + 4*C*b)*cos(d*x + c)^4*log(-sin(d*x +
 c) + 1) + 2*(16*(C*a + B*b)*cos(d*x + c)^3 + 3*(3*B*a + 4*C*b)*cos(d*x + c)^2 + 6*B*a + 8*(C*a + B*b)*cos(d*x
 + c))*sin(d*x + c))/(d*cos(d*x + c)^4)

________________________________________________________________________________________

giac [B]  time = 0.24, size = 304, normalized size = 2.67 \[ \frac {3 \, {\left (3 \, B a + 4 \, C b\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right ) - 3 \, {\left (3 \, B a + 4 \, C b\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right ) + \frac {2 \, {\left (15 \, B a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} - 24 \, C a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} - 24 \, B b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} + 12 \, C b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} + 9 \, B a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 40 \, C a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 40 \, B b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 12 \, C b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 9 \, B a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 40 \, C a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 40 \, B b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 12 \, C b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 15 \, B a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 24 \, C a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 24 \, B b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 12 \, C b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}^{4}}}{24 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))*(B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^6,x, algorithm="giac")

[Out]

1/24*(3*(3*B*a + 4*C*b)*log(abs(tan(1/2*d*x + 1/2*c) + 1)) - 3*(3*B*a + 4*C*b)*log(abs(tan(1/2*d*x + 1/2*c) -
1)) + 2*(15*B*a*tan(1/2*d*x + 1/2*c)^7 - 24*C*a*tan(1/2*d*x + 1/2*c)^7 - 24*B*b*tan(1/2*d*x + 1/2*c)^7 + 12*C*
b*tan(1/2*d*x + 1/2*c)^7 + 9*B*a*tan(1/2*d*x + 1/2*c)^5 + 40*C*a*tan(1/2*d*x + 1/2*c)^5 + 40*B*b*tan(1/2*d*x +
 1/2*c)^5 - 12*C*b*tan(1/2*d*x + 1/2*c)^5 + 9*B*a*tan(1/2*d*x + 1/2*c)^3 - 40*C*a*tan(1/2*d*x + 1/2*c)^3 - 40*
B*b*tan(1/2*d*x + 1/2*c)^3 - 12*C*b*tan(1/2*d*x + 1/2*c)^3 + 15*B*a*tan(1/2*d*x + 1/2*c) + 24*C*a*tan(1/2*d*x
+ 1/2*c) + 24*B*b*tan(1/2*d*x + 1/2*c) + 12*C*b*tan(1/2*d*x + 1/2*c))/(tan(1/2*d*x + 1/2*c)^2 - 1)^4)/d

________________________________________________________________________________________

maple [A]  time = 0.34, size = 171, normalized size = 1.50 \[ \frac {2 a C \tan \left (d x +c \right )}{3 d}+\frac {a C \tan \left (d x +c \right ) \left (\sec ^{2}\left (d x +c \right )\right )}{3 d}+\frac {a B \left (\sec ^{3}\left (d x +c \right )\right ) \tan \left (d x +c \right )}{4 d}+\frac {3 a B \sec \left (d x +c \right ) \tan \left (d x +c \right )}{8 d}+\frac {3 a B \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8 d}+\frac {C b \tan \left (d x +c \right ) \sec \left (d x +c \right )}{2 d}+\frac {C b \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2 d}+\frac {2 B b \tan \left (d x +c \right )}{3 d}+\frac {B b \tan \left (d x +c \right ) \left (\sec ^{2}\left (d x +c \right )\right )}{3 d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*cos(d*x+c))*(B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^6,x)

[Out]

2/3/d*a*C*tan(d*x+c)+1/3/d*a*C*tan(d*x+c)*sec(d*x+c)^2+1/4*a*B*sec(d*x+c)^3*tan(d*x+c)/d+3/8/d*a*B*sec(d*x+c)*
tan(d*x+c)+3/8/d*a*B*ln(sec(d*x+c)+tan(d*x+c))+1/2/d*C*b*tan(d*x+c)*sec(d*x+c)+1/2/d*C*b*ln(sec(d*x+c)+tan(d*x
+c))+2/3/d*B*b*tan(d*x+c)+1/3/d*B*b*tan(d*x+c)*sec(d*x+c)^2

________________________________________________________________________________________

maxima [A]  time = 0.32, size = 163, normalized size = 1.43 \[ \frac {16 \, {\left (\tan \left (d x + c\right )^{3} + 3 \, \tan \left (d x + c\right )\right )} C a + 16 \, {\left (\tan \left (d x + c\right )^{3} + 3 \, \tan \left (d x + c\right )\right )} B b - 3 \, B a {\left (\frac {2 \, {\left (3 \, \sin \left (d x + c\right )^{3} - 5 \, \sin \left (d x + c\right )\right )}}{\sin \left (d x + c\right )^{4} - 2 \, \sin \left (d x + c\right )^{2} + 1} - 3 \, \log \left (\sin \left (d x + c\right ) + 1\right ) + 3 \, \log \left (\sin \left (d x + c\right ) - 1\right )\right )} - 12 \, C b {\left (\frac {2 \, \sin \left (d x + c\right )}{\sin \left (d x + c\right )^{2} - 1} - \log \left (\sin \left (d x + c\right ) + 1\right ) + \log \left (\sin \left (d x + c\right ) - 1\right )\right )}}{48 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))*(B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^6,x, algorithm="maxima")

[Out]

1/48*(16*(tan(d*x + c)^3 + 3*tan(d*x + c))*C*a + 16*(tan(d*x + c)^3 + 3*tan(d*x + c))*B*b - 3*B*a*(2*(3*sin(d*
x + c)^3 - 5*sin(d*x + c))/(sin(d*x + c)^4 - 2*sin(d*x + c)^2 + 1) - 3*log(sin(d*x + c) + 1) + 3*log(sin(d*x +
 c) - 1)) - 12*C*b*(2*sin(d*x + c)/(sin(d*x + c)^2 - 1) - log(sin(d*x + c) + 1) + log(sin(d*x + c) - 1)))/d

________________________________________________________________________________________

mupad [B]  time = 5.33, size = 194, normalized size = 1.70 \[ \frac {\left (\frac {5\,B\,a}{4}-2\,B\,b-2\,C\,a+C\,b\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7+\left (\frac {3\,B\,a}{4}+\frac {10\,B\,b}{3}+\frac {10\,C\,a}{3}-C\,b\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5+\left (\frac {3\,B\,a}{4}-\frac {10\,B\,b}{3}-\frac {10\,C\,a}{3}-C\,b\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3+\left (\frac {5\,B\,a}{4}+2\,B\,b+2\,C\,a+C\,b\right )\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{d\,\left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^8-4\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6+6\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4-4\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+1\right )}+\frac {\mathrm {atanh}\left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )\,\left (\frac {3\,B\,a}{4}+C\,b\right )}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((B*cos(c + d*x) + C*cos(c + d*x)^2)*(a + b*cos(c + d*x)))/cos(c + d*x)^6,x)

[Out]

(tan(c/2 + (d*x)/2)*((5*B*a)/4 + 2*B*b + 2*C*a + C*b) + tan(c/2 + (d*x)/2)^7*((5*B*a)/4 - 2*B*b - 2*C*a + C*b)
 - tan(c/2 + (d*x)/2)^3*((10*B*b)/3 - (3*B*a)/4 + (10*C*a)/3 + C*b) + tan(c/2 + (d*x)/2)^5*((3*B*a)/4 + (10*B*
b)/3 + (10*C*a)/3 - C*b))/(d*(6*tan(c/2 + (d*x)/2)^4 - 4*tan(c/2 + (d*x)/2)^2 - 4*tan(c/2 + (d*x)/2)^6 + tan(c
/2 + (d*x)/2)^8 + 1)) + (atanh(tan(c/2 + (d*x)/2))*((3*B*a)/4 + C*b))/d

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))*(B*cos(d*x+c)+C*cos(d*x+c)**2)*sec(d*x+c)**6,x)

[Out]

Timed out

________________________________________________________________________________________